Fractal Antenna Elements

and Arrays

Here is an excellent introduction to a new technique for antennas
with both wide bandwidth and reduced size
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ith the advance
of wireless com-
munication sys-
tems and increasing

importance of other wire-
less applications, wide-
band and low profile
antennas are in great
demand for both com-
mercial and military
applications. Multi-band
and wideband antennas
are desirable in personal
communication systems,
small satellite communi-
cation terminals, and

other wireless applica-
tions. Wideband antennas
also find applications in
Unmanned Aerial Vehicles (UAVs), Counter
Camouflage, Concealment and Deception
(CC&D), Synthetic Aperture Radar (SAR), and
Ground Moving Target Indicators (GMTI).
Some of these applications also require that an
antenna be embedded into the airframe struc-
ture

Traditionally, a wideband antenna in the low
frequency wireless bands can only be achieved
with heavily loaded wire antennas, which usual-
ly means different antennas are needed for dif-
ferent frequency bands. Recent progress in the
study of fractal antennas suggests some attrac-
tive solutions for using a single small antenna
operating in several frequency bands.

The purpose of this article is to introduce the
concept of the fractal, review the progress in
fractal antenna study and implementation, com-
pare different types of fractal antenna elements
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A Figure 1. Two fractal examples: (a) Mandelbrot Set, (b) Plant.

and arrays and discuss the challenge and future
of this new type of antenna.

Fractals

Benoit B. Mandelbrot [1] investigated the
relationship between fractals and nature using
the discoveries made by Gaston dJulia, Pierre
Fatou and Felix Hausdorff. He showed that
many fractals existed in nature and that fractals
could accurately model certain phenomena. He
introduced new types of fractals to model more
complex structures, such as trees or mountains.
By furthering the idea of a fractional dimension,
he coined the term fractal. His work inspired
interest and has made fractals a very popular
field of study.

Mandelbrot defined a fractal as a rough or
fragmented geometric shape that can be subdi-
vided in parts, each of which is (at least approxi-



A Figure 1(c). Julia Set fractal.

mately) a reduced-size copy of the whole. (A strict mathe-
matical definition is that fractal is an object whose
Hausdorff-Besicovitch dimension strictly exceeds its topo-
logical dimension).

Most fractal objects have self-similar shapes although
there some fractal objects exist that are hardly self-sim-
ilar at all. Most fractals also have infinite complexity
and detail, that is, the complexity and detail of the frac-
tals remain no matter how far you “zoom-in,” as long as
you are zooming in on the right location. Also, most frac-
tals have fractional dimensions.

Fractals can model nature very well. They can be
used to generate realistic landscapes or sunsets, wire-
frames of mountains, rough terrain, ripples on lakes,
coastline, seafloor topography, plants, and ionospheric
layers. Fractals can be divided into many types. Figures
1 (a, b, ¢) show some examples.

Many theories and innovative applications for fractals
are being developed. For instance, fractals have been
applied in image compression, in the creation of music
from pink noise, and in the analysis of high altitude
lightning phenomena [2].

Fractal concepts applied to antennas

There are many ongoing efforts to develop low profile
and wideband antennas such as frequency independent
antennas, as reviewed in [3]. One fundamental property
of classical frequency independent antennas is their
ability to retain the same shape under certain scaling
transformations, which is the self-similar property
shared by many fractals. Several frequency-independent
antennas can be generalized as fractal antennas [4],
although they had nothing to do with fractals when first
developed. Figure 2 shows a log-periodic antenna and a
spiral antenna, both of which can be categorized as frac-
tal antennas.

The general concepts of fractals can be applied to
develop various antenna elements and arrays. Applying
fractals to antenna elements allows for smaller, resonant
antennas that are multiband/broadband and may be
optimized for gain. Applying fractals to antenna arrays
develops multiband/broadband arrays. The fact that
most fractals have infinite complexity and detail can be
used to reduce antenna size and develop low profile
antennas. When antenna elements or arrays are
designed with the concept of self-similarity for most
fractals, they can achieve multiple frequency bands
because different parts of the antenna are similar to
each other at different scales. Application of the frac-
tional dimension of fractal structure leads to the gain
optimization of wire antennas. The combination of the
infinite complexity and detail and the self-similarity
makes it possible to design antennas with very wideband
performance.

The first application of frac-
tals to antenna design was
thinned fractal linear and pla-
nar arrays [5]-[9], i.e., arrang-
ing the elements in a fractal
pattern to reduce the number
of elements in the array and
obtain wideband arrays or
multiband performance. An-
other advantage of these frac-
tal arrays is that the self-simi-
larity in their geometric struc-
ture may be exploited in order
to develop algorithms for rapid
computation of their radiation
patterns. These algorithms are
based on convenient product

(b)

A Figure 2. Frequency independent antennas as fractal antennas: (a) Log-periodic

dipole antenna, (b) Spiral antenna
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representations for the array
factors and are much quicker



(b) (c)

(d)

A Figure 3. Various fractal antenna elements: (a) Koch dipole, (b) Koch loop, (c) Sierpinski dipole, (d) Gantor slot patch

to calculate than the discrete Fourier transform
approach.

Cohen [10] was the first to develop an antenna ele-
ment using the concept of fractals. He demonstrated
that the concept of fractal could be used to significantly
reduce the antenna size without degenerating the per-
formance. Puente et al. [11] demonstrated the multi-
band capability of fractals by studying the behavior of
the Sierpinski monopole and dipole. The Sierpinski
monopole displayed a similar behavior at several bands
for both the input return loss and radiation pattern.
Other fractals [12]-[13] have also been explored to
obtain multi-band or ultra-wideband antennas.

Fractal antenna elements

The fractal concept can be used to reduce antenna
size, such as the Koch dipole, Koch monopole, Koch loop,
and Minkowski loop. Or, it can be used to achieve multi-
ple bandwidth and increase bandwidth of each single
band due to the self-similarity in the geometry, such as
the Sierpinski dipole, Cantor slot patch, and fractal tree
dipole. In other designs, fractal structures are used to
achieve a single very wideband response, e.g., the print-
ed circuit fractal loop antenna. Several fractal antenna
elements are presented in Figure 3.

Koch monopole and dipole — The Koch curve has
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been used to construct a monopole and a dipole in order
to reduce antenna size. One example is shown in Figure
4. In Figure 4(a), the first resonance of a Koch dipole is
at 961 MHz while that of a regular dipole with the same
length is at 1851 MHz. Therefore, the length of the
antenna is reduced by a fact of the 1.9. The current dis-
tribution and radiation patterns for both the Koch
dipole and the regular dipole at the resonant frequencies
are shown in Figure 4(b)-(f). It is worth mentioning that
the radiation pattern of a Koch dipole is slightly differ-
ent from that of a regular dipole because its fractal
dimension is greater than 1.

Koch loop and Minkowski loop — The Koch curve can
also be used to form a loop of reduced size. Another
example is the Minkowski loop formed with a 90-degree
bend. Both types of fractal loops can reduce the diame-
ter of the loop and achieve approximately the same per-
formance as a regular single wire loop.

Sierpinski monopole and dipole — The Sierpinski
gasket is a self-similar structure. In an ideal Sierpinski
gasket, each of its three main parts is exactly a scaled
version of the object (scaled by a factor of two). The self-
similarity properties of the fractal shape are translated
into its electromagnetic behavior and results in a multi-
band antenna. The variation on the antenna’s flare
angle shifts the operating bands, changes the impedance
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A Figure 4. Koch dipole and regular dipole: (a) Input impedance of a Koch dipole; (b) Current distribution of the Koch dipole
at 961 MHz; (c) Current distribution of the regular dipole at 1.851 GHz; (d) 3-D radiation pattern of the Koch dipole at 961
MHz; (e) 3-D radiation pattern of the regular dipole at 1.851 GHz. (continued on next page)

level, and alters the radiation patterns.

Cantor slot patch — The Cantor slot patch is another
example of multiband fractal structure. This type of
patch has been applied in multiband microstrip anten-
nas and multiband frequency selective surfaces.

Fractal Tree — Various fractal tree structures have
been explored as antenna elements and has been found
that the fractal tree usually can achieve multiple wide-
band performance and reduce antenna size.

Printed circuit fractal loops — The printed circuit
fractal loop antenna is designed to achieve ultra wide-
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band or multiple wideband performance and significant-
ly reduce the antenna dimensions. The antenna has a
constant phase center, can be manufactured using print-

ed circuit techniques, and is readily conformable to an
airframe or other structure.

Fractal antenna arrays

The concept of the fractal can be applied in design
and analysis of arrays by either analyzing the array
using fractal theory, or placing elements in fractal
arrangement, or both. Fractal arrangement of array ele-
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A Figure 4 (continued). Koch dipole and regular dipole: (f) Radiation pattern of the Koch dipole at 961 MHz; (g) 3-D radia-
tion pattern of the regular dipole at 1.851 GHz.

ments can produce a thinned array and achieve multi- a Cantor set with a number of design variables. When
band performance. Examples are the Cantor linear thinned, these arrays have a performance that is superi-
array, Cantor ring array and Sierpinski carpet planar or to their periodic counterparts and appear similar to or
array, as shown in Figure 5. better than their random counterparts for a moderate

Cantor linear array — Cantor linear array is based on number of elements. Figure 6 shows the calculated array
factor of a five level Cantor
linear array. The largest
distance as shown in
Figure 6(a) is d5 = 180 cm.
Figure 6(b)-(g) shows the
plot of array factor at dif-
ferent frequency bands. It
is interesting to note that
there are no grating lobes
at  these frequencies
although the distance
between array elements is
quite large at higher fre-
quency bands.

Cantor ring array —
Similar to the Cantor lin-
ear array, Cantor ring
arrays have also been
explored to achieve a
thinned array and achieve
multiple operating fre-
quency bands.

Sierpinski carpet planar
A Figure 5. Various fractal antenna arrays: (a) Cantor linear array; (b) Cantor ring array; (¢) array — Sierpinski carpet

Sierpinski carpet planar array. planar array can be consid-

42 - APPLIED MICROWAVE & WIRELESS



x
ENINAYS

ered to be a two dimensional Cantor linear array, also
having multiband performance.

Conclusions

The concepts of fractals can be applied to the design
of antenna elements and arrays. Publications about the
electromagnetic theory of fractal structures, and various
fractal elements and arrays are redily available. The fact
that most fractals have infinite complexity and detail
makes it possible to use fractal structure to design small
size, low profile, and low weight antennas. In addition,
most fractals have self-similarity, so fractal antenna ele-
ments or arrays also can achieve multiple frequency
bands due to the self-similarity between different parts
of the antenna. Application of the fractional dimension
of fractal structures can lead to gain optimization of
wire antennas. The combination of the infinite complex-
ity and detail and the self-similarity makes it possible to
design antennas with very wideband performance.

There are many interesting issues remaining to be
addressed in the application of fractal structures in the
design and analysis of antenna elements and arrays. For
instance, when fractals are applied to image compres-
sion, adjacent parts are independent of one another.
This is not the case when fractals are applied to anten-
na element and array design. Although they are geo-
metrically similar, mutual coupling exists between dif-
ferent parts of a fractal antenna and the nature of that
coupling depends on the distance and geometry of the
fractal structure. u
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linear array; (b) Array factor at f = 10240 MHz; (c) Array
factor at f = 5120 MHz. (continued on next page)
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A Figure 6 (continued). Array factor of a linear Cantor array: (d) Array factor at f = 2560 MHz; (e) Array factor at f = 1280
MHz; (f) Array factor at f = 640 MHz; (g) Array factor at f = 320 MHz.
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